The first Chern class and conformal area for a twistor holomorphic immersion

We obtain an inequality involving the first Chern class of the normal bundle and the conformal area for a twistor holomorphic surface. Using this inequality, we can improve an inequality obtained by T. Friedrich for the Euler class of the normal bundle of a twistor holomorphic surface in the four-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2014-04, Vol.84 (1), p.67-83
1. Verfasser: Hasegawa, Kazuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain an inequality involving the first Chern class of the normal bundle and the conformal area for a twistor holomorphic surface. Using this inequality, we can improve an inequality obtained by T. Friedrich for the Euler class of the normal bundle of a twistor holomorphic surface in the four-dimensional space form. Moreover, as a corollary, we see that the area of a superminimal surface in the unit sphere is an integer multiple of 2 π , which is essentially proved by E. Calabi.
ISSN:0025-5858
1865-8784
DOI:10.1007/s12188-014-0089-3