The first Chern class and conformal area for a twistor holomorphic immersion
We obtain an inequality involving the first Chern class of the normal bundle and the conformal area for a twistor holomorphic surface. Using this inequality, we can improve an inequality obtained by T. Friedrich for the Euler class of the normal bundle of a twistor holomorphic surface in the four-di...
Gespeichert in:
Veröffentlicht in: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2014-04, Vol.84 (1), p.67-83 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain an inequality involving the first Chern class of the normal bundle and the conformal area for a twistor holomorphic surface. Using this inequality, we can improve an inequality obtained by T. Friedrich for the Euler class of the normal bundle of a twistor holomorphic surface in the four-dimensional space form. Moreover, as a corollary, we see that the area of a superminimal surface in the unit sphere is an integer multiple of
2
π
, which is essentially proved by E. Calabi. |
---|---|
ISSN: | 0025-5858 1865-8784 |
DOI: | 10.1007/s12188-014-0089-3 |