On p-adic quaternionic Eisenstein series
We show that certain p -adic Eisenstein series for quaternionic modular groups of degree 2 become “real” modular forms of level p in almost all cases. To prove this, we introduce a U ( p ) type operator. We also show that there exists a p -adic Eisenstein series of the above type that has transcende...
Gespeichert in:
Veröffentlicht in: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2013-10, Vol.83 (2), p.147-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that certain
p
-adic Eisenstein series for quaternionic modular groups of degree 2 become “real” modular forms of level
p
in almost all cases. To prove this, we introduce a
U
(
p
) type operator. We also show that there exists a
p
-adic Eisenstein series of the above type that has transcendental coefficients. Former examples of
p
-adic Eisenstein series for Siegel and Hermitian modular groups are both rational (i.e., algebraic). |
---|---|
ISSN: | 0025-5858 1865-8784 |
DOI: | 10.1007/s12188-013-0084-0 |