Buckling performance optimization of sub-stiffened composite panels with straight and curvilinear sub-stiffeners

This paper studies the buckling behavior of T-shaped composite stiffened panels reinforced by both straight and curvilinear sub-stiffening configurations subjected to compression. First, the simulated buckling response of the T-shaped stiffened composite panel is verified with experimental results f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2024-09, Vol.49 (4), Article 264
Hauptverfasser: CHAGRAOUI, HAMDA, SOULA, MOHAMED
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the buckling behavior of T-shaped composite stiffened panels reinforced by both straight and curvilinear sub-stiffening configurations subjected to compression. First, the simulated buckling response of the T-shaped stiffened composite panel is verified with experimental results from the existing literature. Subsequently, straight and curvilinear I-shaped sub-stiffeners are introduced into the design of the T-shaped stiffened composite panel. The distribution and laminate stacking sequence of straight and curvilinear sub-stiffened composite panels are optimized to improve buckling performance while maintaining a constant weight constraint. Further, a parametric analysis was implemented to assess the influence of the sub-stiffener curvature on the buckling response of the curvilinear grid sub-stiffened composite panel. Results demonstrate that introducing straight and curvilinear grid sub-stiffeners into the T-shaped stiffened composite panel improves buckling performance. Specifically, the introduction of straight sub-stiffeners results in a remarkable improvement of up to 200% in buckling performance, while introducing curvilinear grid sub-stiffeners exhibits an even more noteworthy improvement of up to 260%, which shows the superior design of curvilinear grid sub-stiffeners when compared to straight sub-stiffeners. This investigation delivers valuable insights into the design of sub-stiffened composite panels for improving structural performance, offering significant advantages for industries such as aerospace that require lightweight structures yet are resistant to buckling.
ISSN:0973-7677
0973-7677
DOI:10.1007/s12046-024-02601-0