Remark on an infinite semipositone problem with indefinite weight and falling zeros
In this work, we consider the positive solutions to the singular problem where 0 0 are constants, Ω is a bounded domain with smooth boundary , Δ is a Laplacian operator, and is a continuous function. The weight functions m ( x ) satisfies m ( x ) ∈ C (Ω) and m ( x ) > m 0 > 0 for x ∈ Ω an...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2013-02, Vol.123 (1), p.145-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we consider the positive solutions to the singular problem
where 0 0 are constants, Ω is a bounded domain with smooth boundary
, Δ is a Laplacian operator, and
is a continuous function. The weight functions
m
(
x
) satisfies
m
(
x
) ∈
C
(Ω) and
m
(
x
) >
m
0
> 0 for
x
∈ Ω and also ||
m
||
∞
=
l
0,
M
> 0,
p
> 1 such that
alu
−
M
≤
f
(
u
) ≤
Au
p
for all
u
∈ [0, ∞ ). We prove the existence of a positive solution via the method of sub-supersolutions when
and
c
is small. Here
λ
1
is the first eigenvalue of operator − Δ with Dirichlet boundary conditions. |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-012-0108-1 |