Remark on an infinite semipositone problem with indefinite weight and falling zeros

In this work, we consider the positive solutions to the singular problem where 0  0 are constants, Ω is a bounded domain with smooth boundary , Δ is a Laplacian operator, and is a continuous function. The weight functions m ( x ) satisfies m ( x ) ∈  C (Ω) and m ( x ) >  m 0  > 0 for x  ∈ Ω an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2013-02, Vol.123 (1), p.145-150
Hauptverfasser: AFROUZI, G A, SHAKERI, S, CHUNG, N T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we consider the positive solutions to the singular problem where 0  0 are constants, Ω is a bounded domain with smooth boundary , Δ is a Laplacian operator, and is a continuous function. The weight functions m ( x ) satisfies m ( x ) ∈  C (Ω) and m ( x ) >  m 0  > 0 for x  ∈ Ω and also || m ||  ∞   =  l   0, M  > 0, p  > 1 such that alu  −  M  ≤  f ( u ) ≤  Au p for all u  ∈ [0, ∞ ). We prove the existence of a positive solution via the method of sub-supersolutions when and c is small. Here λ 1 is the first eigenvalue of operator − Δ with Dirichlet boundary conditions.
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-012-0108-1