Community detection using global and local structural information

Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2013, Vol.80 (1), p.173-185
Hauptverfasser: YAN, HAI-LONG, XIANG, JU, ZHANG, XIAO-YU, FAN, JUN-FENG, CHEN, FANG, FU, GEN-YI, GUO, ER-MIN, HU, XIN-GUANG, HU, KE, WANG, RU-MIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity measures respectively based on local random walk dynamics and local cyclic structures were used. The algorithms were tested on artificial and real-world networks. The results clearly show that all the algorithms have excellent performance in the tests and the local similarity measure based on local random walk dynamics is superior to that based on local cyclic structures.
ISSN:0304-4289
0973-7111
DOI:10.1007/s12043-012-0359-5