Community detection using global and local structural information
Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local si...
Gespeichert in:
Veröffentlicht in: | Pramāṇa 2013, Vol.80 (1), p.173-185 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Community detection is of considerable importance for understanding both the structure and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity measures respectively based on local random walk dynamics and local cyclic structures were used. The algorithms were tested on artificial and real-world networks. The results clearly show that all the algorithms have excellent performance in the tests and the local similarity measure based on local random walk dynamics is superior to that based on local cyclic structures. |
---|---|
ISSN: | 0304-4289 0973-7111 |
DOI: | 10.1007/s12043-012-0359-5 |