Controlled release of 5-flurouracil from biomedical polyurethanes
Novel biodegradable aliphatic poly(ether-urethane)s (PEUs) based on pluronic F-68 (PLF68) and castor oil were synthesized by the solution polymerization technique. These polymers were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic spectroscopy ( 1 HNMR) and gel per...
Gespeichert in:
Veröffentlicht in: | Journal of chemical sciences (Bangalore, India) India), 2010-03, Vol.122 (2), p.209-216 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel biodegradable aliphatic poly(ether-urethane)s (PEUs) based on pluronic F-68 (PLF68) and castor oil were synthesized by the solution polymerization technique. These polymers were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic spectroscopy (
1
HNMR) and gel permeation chromatography (GPC) to confirm the PEU formation and the molecular weight. Moderate molecular weight PEUs were obtained and converted into microspheres by solvent evaporation method to study the controlled release (CR) characteristics for 5-flurouracil (5-FU). PLF-68 acts as amphiphilic filler, which enhances the release of a hydrophobic drug such as 5-FU. Sizes of the microspheres as measured by laser light scattering technique ranged between 15 and 42 µm. An increase in the size of particles was observed with increasing molar ratio of PLF-68 with respect to castor oil. The percentage encapsulation efficiency varied between 71 and 98. Surface morphology of the microspheres as studied by scanning electron microscopy (SEM) revealed the spherical nature of the particles with wrinkles on their surfaces. The release of 5-FU through the microspheres was investigated in pH 7·4-phosphate buffer. An increase in release rate was observed with increasing molar ratio of PLF68 with respect to castor oil. |
---|---|
ISSN: | 0974-3626 0973-7103 |
DOI: | 10.1007/s12039-010-0024-9 |