BAG2 Is Repressed by NF-κB Signaling, and Its Overexpression Is Sufficient to Shift Aβ1-42 from Neurotrophic to Neurotoxic in Undifferentiated SH-SY5Y Neuroblastoma

Amyloid-beta (Aβ) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate important cellular responses to stress, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2015-09, Vol.57 (1), p.83-89
Hauptverfasser: Santiago, Fernando E., Almeida, Maria Camila, Carrettiero, Daniel C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyloid-beta (Aβ) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate important cellular responses to stress, including cell cycle arrest and apoptosis. Here, we use SH-SY5Y neuroblastoma cells to characterize BAG2 expression and regulation and investigate the involvement of BAG2 in Aβ 1-42 -mediated neurotrophism or neurotoxicity in the context of differentiation. We report that BAG2 is upregulated on differentiation of SH-SY5Y cells into neuron-like cells. This increase in BAG2 expression is accompanied by a change in response to treatment with Aβ 1-42 from neurotrophic to neurotoxic. Further, overexpression of BAG2 in undifferentiated SH-SY5Y cells was sufficient to induce the change from neurotrophic to neurotoxic response. Of several transcription factors queried, the putative BAG2 promoter had a higher-than-expected occurrence of response elements (RE) for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with JSH-23, a potent inhibitor of NF-κB, caused a marked increase in BAG2 mRNA expression, suggesting that NF-κB is a repressor of BAG2 transcription in undifferentiated SH-SY5Y cells. Together, these data suggest that NF-κB-mediated modulation of BAG2 expression constitutes a “switch” that regulates the shift between the neurotrophic and neurotoxic effects of Aβ 1-42 .
ISSN:0895-8696
1559-1166
DOI:10.1007/s12031-015-0579-5