POSS-vinyl-urethane acrylate-based nanohybrid coating materials

The effect of POSS-vinyl-heptaisobutyl-substituted (POSSV) compounds as an inorganic additive on the thermal and physical properties of nanohybrid coating materials based on urethane acrylate (UA) resin has been investigated. A diol compound obtained from the reaction of itaconic acid and 1,2-epoxy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Coatings Technology and Research 2024-03, Vol.21 (2), p.575-587
Hauptverfasser: Eren, Yasemin, Şen, Ferhat, Abdurrahmanoğlu, Suzan, Karataş, Sevim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of POSS-vinyl-heptaisobutyl-substituted (POSSV) compounds as an inorganic additive on the thermal and physical properties of nanohybrid coating materials based on urethane acrylate (UA) resin has been investigated. A diol compound obtained from the reaction of itaconic acid and 1,2-epoxy cyclohexane has been used to produce an UV curable epoxy-based urathane acrylate resin. Nanohybrid coating materials were obtained by curing the UA resin with UV radiation through the thiol–ene reaction, mixed with various amounts of POSSV compounds. The structure of the UA resin was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy techniques. The UV curing process was also studied by the double bond conversion method. Aggregation of the nanohybrid materials was determined by X-ray diffraction. The thermal, non-flammability, and thermomechanical properties of the samples were examined by thermogravimetric analysis, limiting oxygen index, and dynamic mechanical analysis techniques. Light transmittance of the samples was determined by UV–Vis spectrophotometry, and their morphological structure was determined by scanning electron microscopy. In addition, gel contents, swelling rates, hardness, adhesion, contact angles, and resistance to chemicals and solvents of the samples were examined. In conclusion, nanohybrid materials obtained from the synthesized UA resin and improved with POSSV additive can be used in the coating industry.
ISSN:1547-0091
1935-3804
DOI:10.1007/s11998-023-00839-7