Tungstate and vanadate-doped polypyrrole/aluminum flake composite coatings for the corrosion protection of aluminum 2024-T3
Polypyrrole (PPy) doped with either tungstate or vanadate as counter anions was synthesized by chemical oxidative polymerization on the surface of aluminum (Al) flakes. This resulted in the deposition of PPy on the surface of the Al flakes leading to the formation of doped PPy/Al flake composite pig...
Gespeichert in:
Veröffentlicht in: | Journal of Coatings Technology and Research 2015-03, Vol.12 (2), p.259-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polypyrrole (PPy) doped with either tungstate or vanadate as counter anions was synthesized by chemical oxidative polymerization on the surface of aluminum (Al) flakes. This resulted in the deposition of PPy on the surface of the Al flakes leading to the formation of doped PPy/Al flake composite pigments. These composite pigments were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, conductive-atomic force microscopy, four-point probe conductivity, and X-ray photoelectron spectroscopy. Furthermore, these composites were incorporated in an epoxy-amide binder system in order to formulate a primer for an aluminum 2024-T3 substrate. The coatings were exposed to the Prohesion test conditions and corrosion resistance properties were monitored by electrochemical impedance spectroscopy, DC polarization, galvanic coupling, and scanning electrochemical microscopy measurements. It was found that the doped PPy/Al flake coatings provided sacrificial protection to the underlying aluminum 2024-T3 substrate. Additionally, the release of dopants from PPy backbone resulted in the passivation in the defect areas improving the corrosion protection ability. |
---|---|
ISSN: | 1547-0091 1935-3804 |
DOI: | 10.1007/s11998-014-9633-4 |