Improving hydrophobicity on polyurethane-based synthetic leather through plasma polymerization for easy care effect
This study reports on the deposition of a hydrophobic coating on polyurethane (PU)-based synthetic leather through a plasma polymerization method and investigates the hydrophobic behavior of the plasma-coated substrate. The silicon compound of hexamethyldisiloxane (HMDSO), inactive gas argon (Ar), a...
Gespeichert in:
Veröffentlicht in: | Journal of Coatings Technology and Research 2013, Vol.10 (4), p.549-558 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study reports on the deposition of a hydrophobic coating on polyurethane (PU)-based synthetic leather through a plasma polymerization method and investigates the hydrophobic behavior of the plasma-coated substrate. The silicon compound of hexamethyldisiloxane (HMDSO), inactive gas argon (Ar), and toluene were used to impart surface hydrophobicity to a PU-based substrate. Surface hydrophobicity was analyzed by water contact angle measurements. Surface hydrophobicity was increased by deposition of compositions of 100% HMDSO, 3:1 HMDSO/toluene, and 1:1 HMDSO/toluene. Optimum conditions of 40 W, 30 s plasma treatment resulted in essentially the same initial contact angle results of approximately 100° for all three treatment compositions. The initial water contact angle for untreated material was about 73°. A water droplet took 1800 s to spread out on the plasma-treated sample after it had been placed on the sample surface. An increase in plasma power also led to a decrease in contact angle, which may be attributed to oxidization of HMDSO during plasma deposition. XPS analysis showed that plasma polymerization of HMDSO/toluene compositions led to a significant increase in atomic percentage of Si compound responsible for the hydrophobic surface. The easy clean results for the treated and untreated PU-based synthetic leather samples clearly showed that the remaining stain on the plasma-polymerized sample was less than that of untreated sample. The plasma-formed coating was both hydrophobic and formed a physical barrier against water and stain. |
---|---|
ISSN: | 1547-0091 1935-3804 |
DOI: | 10.1007/s11998-013-9470-x |