Phase space path integral on torus for the fundamental solution of higher-order parabolic equations

We give a rigorous formulation of phase space path integrals on the torus T d = ( R / 2 π Z ) d for fundamental solutions of higher-order parabolic equations. Especially, by using the pseudo-differential operators on the torus, we prove that the time slicing approximation of the phase space path int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2020-09, Vol.11 (3), p.1059-1083
Hauptverfasser: Kumano-go, Naoto, Uchida, Keiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a rigorous formulation of phase space path integrals on the torus T d = ( R / 2 π Z ) d for fundamental solutions of higher-order parabolic equations. Especially, by using the pseudo-differential operators on the torus, we prove that the time slicing approximation of the phase space path integral converges on compact subsets of T d × R d .
ISSN:1662-9981
1662-999X
DOI:10.1007/s11868-020-00341-3