Phase space path integral on torus for the fundamental solution of higher-order parabolic equations
We give a rigorous formulation of phase space path integrals on the torus T d = ( R / 2 π Z ) d for fundamental solutions of higher-order parabolic equations. Especially, by using the pseudo-differential operators on the torus, we prove that the time slicing approximation of the phase space path int...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2020-09, Vol.11 (3), p.1059-1083 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a rigorous formulation of phase space path integrals on the torus
T
d
=
(
R
/
2
π
Z
)
d
for fundamental solutions of higher-order parabolic equations. Especially, by using the pseudo-differential operators on the torus, we prove that the time slicing approximation of the phase space path integral converges on compact subsets of
T
d
×
R
d
. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-020-00341-3 |