Erdős–Moser and IΣ2

The first-order part of Ramsey’s theorem for pairs with an arbitrary number of colors is known to be precisely B Σ 3 0 . We compare this to the known division of Ramsey’s theorem for pairs into the weaker principles, EM (the Erdős–Moser principle) and ADS (the ascending-descending sequence principle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2024-10, Vol.263 (2), p.843-870
Hauptverfasser: Towsner, Henry, Yokoyama, Keita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first-order part of Ramsey’s theorem for pairs with an arbitrary number of colors is known to be precisely B Σ 3 0 . We compare this to the known division of Ramsey’s theorem for pairs into the weaker principles, EM (the Erdős–Moser principle) and ADS (the ascending-descending sequence principle): we show that the additional strength beyond I Σ 2 0 is entirely due to the arbitrary color analog of ADS. Specifically, we show that ADS for an arbitrary number of colors implies B Σ 3 0 while EM for an arbitrary number of colors is Π 1 1 -conservative over I Σ 2 0 and it does not imply I Σ 2 0 .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-024-2643-8