A model with Suslin trees but no minimal uncountable linear orders other than ω1 and −ω1
We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than ω 1 and − ω 1 , answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2019-08, Vol.233 (1), p.199-224 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than
ω
1
and −
ω
1
, answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder system uniformization on trees, all while preserving a rigid Suslin tree. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-019-1899-x |