A model with Suslin trees but no minimal uncountable linear orders other than ω1 and −ω1

We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than ω 1 and − ω 1 , answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2019-08, Vol.233 (1), p.199-224
1. Verfasser: Soukup, Dániel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the existence of a Suslin tree does not necessarily imply that there are uncountable minimal linear orders other than ω 1 and − ω 1 , answering a question of J. Baumgartner. This is done by a Jensen-type iteration, proving that one can force CH together with a restricted form of ladder system uniformization on trees, all while preserving a rigid Suslin tree.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-019-1899-x