An approximate version of the tree packing conjecture

We prove that for any pair of constants ɛ > 0 and Δ and for n sufficiently large, every family of trees of orders at most n , maximum degrees at most Δ, and with at most ( n 2 ) edges in total packs into . This implies asymptotic versions of the Tree Packing Conjecture of Gyárfás from 1976 and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2016-02, Vol.211 (1), p.391-446
Hauptverfasser: Böttcher, Julia, Hladký, Jan, Piguet, Diana, Taraz, Anusch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for any pair of constants ɛ > 0 and Δ and for n sufficiently large, every family of trees of orders at most n , maximum degrees at most Δ, and with at most ( n 2 ) edges in total packs into . This implies asymptotic versions of the Tree Packing Conjecture of Gyárfás from 1976 and a tree packing conjecture of Ringel from 1963 for trees with bounded maximum degree. A novel random tree embedding process combined with the nibble method forms the core of the proof.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-015-1277-2