Some restrictions on normalizers or centralizers in finite p-groups
We study three restrictions on normalizers or centralizers in finite p -groups, namely: (i) | N G ( H ): H |≤ p k for every H G , (ii) | N G (〈 g 〉):〈 g 〉|≤ p k for every 〈 g 〉 G , and (iii) | C G ( g ): 〈 g 〉 ≤ p k for every 〈 g 〉 G . We prove that (i) and (ii) are equivalent, and that the order of...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2015-09, Vol.208 (1), p.193-217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study three restrictions on normalizers or centralizers in finite
p
-groups, namely: (i) |
N
G
(
H
):
H
|≤
p
k
for every
H
G
, (ii) |
N
G
(〈
g
〉):〈
g
〉|≤
p
k
for every 〈
g
〉
G
, and (iii) |
C
G
(
g
): 〈
g
〉 ≤
p
k
for every 〈
g
〉
G
. We prove that (i) and (ii) are equivalent, and that the order of a non-Dedekind finite
p
-group satisfying any of these three conditions is bounded for
p
> 2. (For condition (i) this fact was proved earlier by Zhang and Guo [14].) More precisely, we get the best possible bound for the order of
G
in all three cases, which is |
G
| ≤
p
2
k
+2
. The order of the group cannot be bounded for
p
= 2, but we are able to identify two infinite families of 2-groups out of which |
G
| ≤ 2
f
(
k
)
for some function
f
(
k
) depending only on
k
. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-015-1197-1 |