Some restrictions on normalizers or centralizers in finite p-groups

We study three restrictions on normalizers or centralizers in finite p -groups, namely: (i) | N G ( H ): H |≤ p k for every H G , (ii) | N G (〈 g 〉):〈 g 〉|≤ p k for every 〈 g 〉 G , and (iii) | C G ( g ): 〈 g 〉 ≤ p k for every 〈 g 〉 G . We prove that (i) and (ii) are equivalent, and that the order of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2015-09, Vol.208 (1), p.193-217
Hauptverfasser: Fernández-Alcober, Gustavo A., Legarreta, Leire, Tortora, Antonio, Tota, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study three restrictions on normalizers or centralizers in finite p -groups, namely: (i) | N G ( H ): H |≤ p k for every H G , (ii) | N G (〈 g 〉):〈 g 〉|≤ p k for every 〈 g 〉 G , and (iii) | C G ( g ): 〈 g 〉 ≤ p k for every 〈 g 〉 G . We prove that (i) and (ii) are equivalent, and that the order of a non-Dedekind finite p -group satisfying any of these three conditions is bounded for p > 2. (For condition (i) this fact was proved earlier by Zhang and Guo [14].) More precisely, we get the best possible bound for the order of G in all three cases, which is | G | ≤ p 2 k +2 . The order of the group cannot be bounded for p = 2, but we are able to identify two infinite families of 2-groups out of which | G | ≤ 2 f ( k ) for some function f ( k ) depending only on k .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-015-1197-1