A Kadec-Pelczyński dichotomy-type theorem for preduals of JBW-algebras

We prove a Kadec-Pelczyński dichotomy-type theorem for bounded sequences in the predual of a JBW*-algebra, showing that for each bounded sequence ( ϕ n ) in the predual of a JBW*-algebra M , there exist a subsequence ( ϕ τ ( n ) , and a sequence of mutually orthogonal projections ( p n ) in M such t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2015-09, Vol.208 (1), p.45-78
Hauptverfasser: Fernández-Polo, Francisco J., Peralta, Antonio M., Ramírez, María Isabel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a Kadec-Pelczyński dichotomy-type theorem for bounded sequences in the predual of a JBW*-algebra, showing that for each bounded sequence ( ϕ n ) in the predual of a JBW*-algebra M , there exist a subsequence ( ϕ τ ( n ) , and a sequence of mutually orthogonal projections ( p n ) in M such that: the set is relatively weakly compact ϕ τ ( n ) = ξ n + ψ n , with ξ n := ϕ τ ( n ) − ϕ τ ( n ) P 2 ( p n ), and ψ n := ϕ τ ( n ) P 2 ( p n ), ( ξ n Q ( p n ) = 0 and ψ n Q ( p n ) 2 = ψ n ) for every n .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-015-1193-5