A Kadec-Pelczyński dichotomy-type theorem for preduals of JBW-algebras
We prove a Kadec-Pelczyński dichotomy-type theorem for bounded sequences in the predual of a JBW*-algebra, showing that for each bounded sequence ( ϕ n ) in the predual of a JBW*-algebra M , there exist a subsequence ( ϕ τ ( n ) , and a sequence of mutually orthogonal projections ( p n ) in M such t...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2015-09, Vol.208 (1), p.45-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a Kadec-Pelczyński dichotomy-type theorem for bounded sequences in the predual of a JBW*-algebra, showing that for each bounded sequence (
ϕ
n
) in the predual of a JBW*-algebra
M
, there exist a subsequence (
ϕ
τ
(
n
)
, and a sequence of mutually orthogonal projections (
p
n
) in
M
such that:
the set
is relatively weakly compact
ϕ
τ
(
n
)
=
ξ
n
+
ψ
n
, with
ξ
n
:=
ϕ
τ
(
n
)
−
ϕ
τ
(
n
)
P
2
(
p
n
), and
ψ
n
:=
ϕ
τ
(
n
)
P
2
(
p
n
), (
ξ
n
Q
(
p
n
) = 0 and
ψ
n
Q
(
p
n
)
2
=
ψ
n
) for every
n
. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-015-1193-5 |