Modules invariant under automorphisms of their covers and envelopes

In this paper we develop a general theory of modules which are invariant under automorphisms of their covers and envelopes. When applied to specific cases like injective envelopes, pure-injective envelopes, cotorsion envelopes, projective covers, or flat covers, these results extend and provide a mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2015-02, Vol.206 (1), p.457-482
Hauptverfasser: Asensio, Pedro A. Guil, Tütüncü, Derya Keskin, Srivastava, Ashish K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we develop a general theory of modules which are invariant under automorphisms of their covers and envelopes. When applied to specific cases like injective envelopes, pure-injective envelopes, cotorsion envelopes, projective covers, or flat covers, these results extend and provide a much more succinct and clear proofs for various results existing in the literature. Our results are based on several key observations on the additive unit structure of von Neumann regular rings.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-014-1147-3