On the KŁR conjecture in random graphs
The KŁR conjecture of Kohayakawa, Łuczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph G n , p , for sufficiently large p := p ( n ), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Röd...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2014-10, Vol.203 (1), p.535-580 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The KŁR conjecture of Kohayakawa, Łuczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph
G
n
,
p
, for sufficiently large
p
:=
p
(
n
), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known applications to random graphs. In particular, our result implies a number of recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We also discuss several further applications. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-014-1120-1 |