The average degree of an irreducible character of a finite group
Given a finite group G , we write acd( G ) to denote the average of the degrees of the irreducible characters of G . We show that if acd( G ) ≤ 3, then G is solvable. Also, if acd( G ) < 3/2, then G is supersolvable, and if acd( G ) < 4/3, then G is nilpotent.
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2013-10, Vol.197 (1), p.55-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a finite group
G
, we write acd(
G
) to denote the average of the degrees of the irreducible characters of
G
. We show that if acd(
G
) ≤ 3, then
G
is solvable. Also, if acd(
G
) < 3/2, then
G
is supersolvable, and if acd(
G
) < 4/3, then
G
is nilpotent. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-013-0013-z |