The average degree of an irreducible character of a finite group

Given a finite group G , we write acd( G ) to denote the average of the degrees of the irreducible characters of G . We show that if acd( G ) ≤ 3, then G is solvable. Also, if acd( G ) < 3/2, then G is supersolvable, and if acd( G ) < 4/3, then G is nilpotent.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2013-10, Vol.197 (1), p.55-67
Hauptverfasser: Isaacs, I. M., Loukaki, Maria, Moretó, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a finite group G , we write acd( G ) to denote the average of the degrees of the irreducible characters of G . We show that if acd( G ) ≤ 3, then G is solvable. Also, if acd( G ) < 3/2, then G is supersolvable, and if acd( G ) < 4/3, then G is nilpotent.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-013-0013-z