Square-central elements and standard generators for biquaternion algebras

Analyzing square-central elements in central simple algebras of degree 4, we show that every two elementary abelian Galois maximal subfields are connected by a chain of nontrivially-intersecting pairs. Similar results are proved for non-central quaternion subalgebras, and for central quaternion suba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2013-10, Vol.197 (1), p.409-423
Hauptverfasser: Chapman, Adam, Vishne, Uzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analyzing square-central elements in central simple algebras of degree 4, we show that every two elementary abelian Galois maximal subfields are connected by a chain of nontrivially-intersecting pairs. Similar results are proved for non-central quaternion subalgebras, and for central quaternion subalgebras when they exist. Along these lines we classify the maximal square-central subspaces. We also show that every two standard quadruples of generators of a biquaternion algebra are connected by a chain of basic steps, in each of which at most two generators are being changed.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-013-0005-z