On the order of an automorphism of a smooth hypersurface
In this paper we give an effective criterion as to when a positive integer q is the order of an automorphism of a smooth hypersurface of dimension n and degree d , for every d ≥ 3, n ≥ 2, ( n, d ) ≠ (2, 4), and gcd( q, d ) = gcd( q, d − 1) = 1. This allows us to give a complete criterion in the case...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2013-10, Vol.197 (1), p.29-49 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we give an effective criterion as to when a positive integer
q
is the order of an automorphism of a smooth hypersurface of dimension
n
and degree
d
, for every
d
≥ 3,
n
≥ 2, (
n, d
) ≠ (2, 4), and gcd(
q, d
) = gcd(
q, d
− 1) = 1. This allows us to give a complete criterion in the case where
q
=
p
is a prime number. In particular, we show the following result: If
X
is a smooth hypersurface of dimension
n
and degree
d
admitting an automorphism of prime order
p
then
p
< (
d
− 1)
n
+1
; and if
p
> (
d
− 1)
n
then
X
is isomorphic to the Klein hypersurface,
n
= 2 or
n
+ 2 is prime, and
p
= Φ
n
+2
(1 −
d
) where Φ
n
+2
is the (
n
+2)-th cyclotomic polynomial. Finally, we provide some applications to intermediate jacobians of Klein hypersurfaces. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-012-0177-y |