Algebraic properties of codimension series of PI-algebras

Let c n ( R ), n = 0, 1, 2, …, be the codimension sequence of the PI -algebra R over a field of characteristic 0 with T -ideal T ( R ) and let c ( R, t ) = c 0 ( R ) + c 1 ( R ) t + c 2 ( R ) t 2 + … be the codimension series of R (i.e., the generating function of the codimension sequence of R ). Le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2013-06, Vol.195 (2), p.593-611
Hauptverfasser: Boumova, Silvia, Drensky, Vesselin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let c n ( R ), n = 0, 1, 2, …, be the codimension sequence of the PI -algebra R over a field of characteristic 0 with T -ideal T ( R ) and let c ( R, t ) = c 0 ( R ) + c 1 ( R ) t + c 2 ( R ) t 2 + … be the codimension series of R (i.e., the generating function of the codimension sequence of R ). Let R 1 , R 2 and R be PI -algebras such that T ( R ) = T ( R 1) T ( R 2 ). We show that if c ( R 1 , t ) and c ( R 2 , t ) are rational functions, then c ( R, t ) is also rational. If c ( R 1 , t ) is rational and c ( R 2 , t ) is algebraic, then c ( R, t ) is also algebraic. The proof is based on the fact that the product of two exponential generating functions behaves as the exponential generating function of the sequence of the degrees of the outer tensor products of two sequences of representations of the symmetric groups S n .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-012-0110-4