Minima, pentes et algèbre tensorielle

Slopes of an adelic vector bundle exhibit a behaviour akin to successive minima. Comparisons between the two amount to a Siegel lemma. Here we use Zhang’s version for absolute minima over the algebraic numbers. We prove a Minkowski-Hlawka theorem in this context. We also study the tensor product of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2013-06, Vol.195 (2), p.565-591
Hauptverfasser: Gaudron, Éric, Rémond, Gaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Slopes of an adelic vector bundle exhibit a behaviour akin to successive minima. Comparisons between the two amount to a Siegel lemma. Here we use Zhang’s version for absolute minima over the algebraic numbers. We prove a Minkowski-Hlawka theorem in this context. We also study the tensor product of two hermitian bundles bounding both its absolute minimum and maximal slope, thus improving an estimate of Chen. We further include similar inequalities for exterior and symmetric powers, in terms of some lcm of multinomial coefficients.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-012-0109-x