Externally definable sets and dependent pairs
We prove that externally definable sets in first order NIP theories have honest definitions , giving a new proof of Shelah’s expansion theorem. Also we discuss a weak notion of stable embeddedness true in this context. Those results are then used to prove a general theorem on dependent pairs, which...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2013-03, Vol.194 (1), p.409-425 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that externally definable sets in first order
NIP
theories have
honest definitions
, giving a new proof of Shelah’s expansion theorem. Also we discuss a weak notion of stable embeddedness true in this context. Those results are then used to prove a general theorem on dependent pairs, which in particular answers a question of Baldwin and Benedikt on naming an indiscernible sequence. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-012-0061-9 |