Splitting kernels into small summands
Let λ be a regular cardinal. An epimorphism between abelian groups is λ -pure if it is projective with respect to abelian groups of size less than λ . We show that cotorsion groups A have λ -pure projective dimension greater than 1 for all uncountable λ ≤ | A / tA |, where tA denotes the torsion sub...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2012-03, Vol.188 (1), p.221-230 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
λ
be a regular cardinal. An epimorphism between abelian groups is
λ
-pure
if it is projective with respect to abelian groups of size less than
λ
. We show that cotorsion groups
A
have
λ
-pure projective dimension greater than 1 for all uncountable
λ
≤ |
A
/
tA
|, where
tA
denotes the torsion subgroup of
A
. For
λ
> |
A
/
tA
|, cotorsion groups
A
are
λ
-pure projective.
This is related to a (hard) problem of Neeman in module theory about writing modules as factors of direct sums of small modules. We hope that this is a first step towards a counterexample of this problem. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-011-0121-6 |