Model theoretic connected components of groups
We give a general exposition of model theoretic connected components of groups. We show that if a group G has NIP, then there exists the smallest invariant (over some small set) subgroup of G with bounded index (Theorem 5.3). This result extends a theorem of Shelah from [21] . We consider also in th...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2011-08, Vol.184 (1), p.251-274 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a general exposition of model theoretic connected components of groups. We show that if a group
G
has NIP, then there exists the smallest invariant (over some small set) subgroup of
G
with bounded index (Theorem 5.3). This result extends a theorem of Shelah from
[21]
. We consider also in this context the multiplicative and the additive groups of some rings (including infinite fields). |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-011-0067-8 |