Model theoretic connected components of groups

We give a general exposition of model theoretic connected components of groups. We show that if a group G has NIP, then there exists the smallest invariant (over some small set) subgroup of G with bounded index (Theorem 5.3). This result extends a theorem of Shelah from [21] . We consider also in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2011-08, Vol.184 (1), p.251-274
1. Verfasser: Gismatullin, Jakub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a general exposition of model theoretic connected components of groups. We show that if a group G has NIP, then there exists the smallest invariant (over some small set) subgroup of G with bounded index (Theorem 5.3). This result extends a theorem of Shelah from [21] . We consider also in this context the multiplicative and the additive groups of some rings (including infinite fields).
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-011-0067-8