Supertropical matrix algebra

The objective of this paper is to develop a general algebraic theory of supertropical matrix algebra, extending [11] . Our main results are as follows: The tropical determinant (i.e., permanent) is multiplicative when all the determinants involved are tangible. There exists an adjoint matrix adj( A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2011-03, Vol.182 (1), p.383-424
Hauptverfasser: Izhakian, Zur, Rowen, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this paper is to develop a general algebraic theory of supertropical matrix algebra, extending [11] . Our main results are as follows: The tropical determinant (i.e., permanent) is multiplicative when all the determinants involved are tangible. There exists an adjoint matrix adj( A ) such that the matrix A adj( A ) behaves much like the identity matrix (times | A |). Every matrix A is a supertropical root of its Hamilton-Cayley polynomial f A . If these roots are distinct, then A is conjugate (in a certain supertropical sense) to a diagonal matrix. The tropical determinant of a matrix A is a ghost iff the rows of A are tropically dependent, iff the columns of A are tropically dependent. Every root of f A is a “supertropical” eigenvalue of A (appropriately defined), and has a tangible supertropical eigenvector.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-011-0036-2