Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds
A quaternionic version of the Calabi problem on the Monge-Ampère equation is introduced, namely a quaternionic Monge-Ampère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL ( n ,ℍ), un...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2010-03, Vol.176 (1), p.109-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quaternionic version of the Calabi problem on the Monge-Ampère equation is introduced, namely a quaternionic Monge-Ampère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in
SL
(
n
,ℍ), uniqueness (up to a constant) of a solution is proven, aas well as the zero order a priori estimate. The existence of a solution is conjectured, similar to the Calabi-Yau theorem. We reformulate this quaternionic equation as a special case of the complex Hessian equation, making sense on any complex manifold. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-010-0022-0 |