Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds

A quaternionic version of the Calabi problem on the Monge-Ampère equation is introduced, namely a quaternionic Monge-Ampère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL ( n ,ℍ), un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2010-03, Vol.176 (1), p.109-138
Hauptverfasser: Alesker, S., Verbitsky, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quaternionic version of the Calabi problem on the Monge-Ampère equation is introduced, namely a quaternionic Monge-Ampère equation on a compact hypercomplex manifold with an HKT-metric. The equation is non-linear elliptic of second order. For a hypercomplex manifold with holonomy in SL ( n ,ℍ), uniqueness (up to a constant) of a solution is proven, aas well as the zero order a priori estimate. The existence of a solution is conjectured, similar to the Calabi-Yau theorem. We reformulate this quaternionic equation as a special case of the complex Hessian equation, making sense on any complex manifold.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-010-0022-0