Fields interpretable in rosy theories

We are working in a monster model ℭ of a rosy theory T . We prove the following theorems, generalizing the appropriate results from the finite Morley rank case and o-minimal structures. If R is a ⋁-definable integral domain of positive, finite U þ -rank, then its field of fractions is interpretable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2010, Vol.175 (1), p.421-444
1. Verfasser: Krupiński, Krzysztof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are working in a monster model ℭ of a rosy theory T . We prove the following theorems, generalizing the appropriate results from the finite Morley rank case and o-minimal structures. If R is a ⋁-definable integral domain of positive, finite U þ -rank, then its field of fractions is interpretable in ℭ. If A and M are infinite, definable, abelian groups such that A acts definably and faithfully on M as a group of automorphisms, M is A -minimal and U þ ( M ) is finite, then there is an infinite field interpretable in ℭ. If G is an infinite, solvable but non nilpotent-by-finite, definable group of finite U þ -rank and T has NIP, then there is an infinite field interpretable in 〈 G , ·〉. In the last part, we study infinite, superrosy, dependent fields. Using measures, we show that each such field K satisfies K = K n − K n for every n ≥ 1.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-010-0017-x