When do random subsets decompose a finite group?
Let A, B be two random subsets of a finite group G . We consider the event that the products of elements from A and B span the whole group, i.e. [ AB ∪ BA = G ]. The study of this event gives rise to a group invariant we call Θ( G ). Θ( G ) is between 1/2 and 1, and is 1 if and only if the group is...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2009-11, Vol.174 (1), p.203-219 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A, B
be two random subsets of a finite group
G
. We consider the event that the products of elements from
A
and
B
span the whole group, i.e. [
AB
∪
BA
=
G
]. The study of this event gives rise to a group invariant we call Θ(
G
). Θ(
G
) is between 1/2 and 1, and is 1 if and only if the group is abelian. We show that a phase transition occurs as the size of
A
and
B
passes √Θ(
G
)|
G
| log |
G
|; i.e. for any
ɛ
> 0, if the size of
A
and
B
is less than (1 −
ɛ
)√Θ(
G
)|
G
| log |
G
|, then with high probability
AB
∪
BA
≠
G
. If A and B are larger than (1 +
ɛ
)√Θ(
G
)|
G
| log |
G
|, then
AB
∪
BA
=
G
with high probability. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-009-0110-1 |