The Morse and Maslov indices for Schrödinger operators

We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2018-06, Vol.135 (1), p.345-387
Hauptverfasser: Latushkin, Yuri, Sukhtaiev, Selim, Sukhtayev, Alim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by perturbing a given self-adjoint operator by a smooth family of bounded self-adjoint operators. The abstract results are applied to the Schrödinger operators with θ -periodic, Dirichlet, and Neumann boundary conditions. In particular, we derive an analogue of the Morse-Smale Index Theorem for multi-dimensional Schrödinger operators with periodic potentials. For quasi-convex domains in R n , we recast the results, connecting the Morse and Maslov indices using the Dirichlet and Neumann traces on the boundary of the domain.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-018-0043-x