The Morse and Maslov indices for Schrödinger operators
We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2018-06, Vol.135 (1), p.345-387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the spectrum of Schrödinger operators with matrixvalued potentials, utilizing tools from infinite-dimensional symplectic geometry. Using the spaces of abstract boundary values, we derive relations between the Morse and Maslov indices for a family of operators on a Hilbert space obtained by perturbing a given self-adjoint operator by a smooth family of bounded self-adjoint operators. The abstract results are applied to the Schrödinger operators with
θ
-periodic, Dirichlet, and Neumann boundary conditions. In particular, we derive an analogue of the Morse-Smale Index Theorem for multi-dimensional Schrödinger operators with periodic potentials. For quasi-convex domains in R
n
, we recast the results, connecting the Morse and Maslov indices using the Dirichlet and Neumann traces on the boundary of the domain. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-018-0043-x |