T-Coloring of Certain Networks

Given a graph G and a finite set T of non-negative integers containing zero, a T -coloring of G is a non-negative integer function f defined on V ( G ) such that | f ( x ) - f ( y ) | ∉ T whenever ( x , y ) ∈ E ( G ) . The span of T -coloring is the difference between the largest and smallest colors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2016-06, Vol.10 (2), p.239-248
Hauptverfasser: Sivagami, P., Rajasingh, Indra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graph G and a finite set T of non-negative integers containing zero, a T -coloring of G is a non-negative integer function f defined on V ( G ) such that | f ( x ) - f ( y ) | ∉ T whenever ( x , y ) ∈ E ( G ) . The span of T -coloring is the difference between the largest and smallest colors, and the T -span of G is the minimum span over all T -colorings f of G . The edge span of a T -coloring is the maximum value of | f ( x ) - f ( y ) | over all edges ( x , y ) ∈ E ( G ) , and the T -edge span of G is the minimum edge span over all T -colorings f of G . In this paper, we compute T -span and T -edge span of crown graph, circular ladder and mobius ladder, generalized theta graph, series-parallel graph and wrapped butterfly network.
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-016-0260-6