T-Coloring of Certain Networks
Given a graph G and a finite set T of non-negative integers containing zero, a T -coloring of G is a non-negative integer function f defined on V ( G ) such that | f ( x ) - f ( y ) | ∉ T whenever ( x , y ) ∈ E ( G ) . The span of T -coloring is the difference between the largest and smallest colors...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2016-06, Vol.10 (2), p.239-248 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a graph
G
and a finite set
T
of non-negative integers containing zero, a
T
-coloring of
G
is a non-negative integer function
f
defined on
V
(
G
) such that
|
f
(
x
)
-
f
(
y
)
|
∉
T
whenever
(
x
,
y
)
∈
E
(
G
)
. The span of
T
-coloring is the difference between the largest and smallest colors, and the
T
-span of
G
is the minimum span over all
T
-colorings
f
of
G
. The edge span of a
T
-coloring is the maximum value of
|
f
(
x
)
-
f
(
y
)
|
over all edges
(
x
,
y
)
∈
E
(
G
)
, and the
T
-edge span of
G
is the minimum edge span over all
T
-colorings
f
of
G
. In this paper, we compute
T
-span and
T
-edge span of crown graph, circular ladder and mobius ladder, generalized theta graph, series-parallel graph and wrapped butterfly network. |
---|---|
ISSN: | 1661-8270 1661-8289 |
DOI: | 10.1007/s11786-016-0260-6 |