Strong Kernel Number in Certain Oriented Cycle Extension of Graphs

A kernel in a directed graph D ( V , E ) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in V \ S there is a vertex v in S , such that ( u , v ) is an arc of D . The problem of existence of a kernel is itself an NP -complete for a general digraph. But i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2015-06, Vol.9 (2), p.193-199
1. Verfasser: Punitha, M. Joice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A kernel in a directed graph D ( V , E ) is a set S of vertices of D such that no two vertices in S are adjacent and for every vertex u in V \ S there is a vertex v in S , such that ( u , v ) is an arc of D . The problem of existence of a kernel is itself an NP -complete for a general digraph. But in this paper we solve the strong kernel problem for certain oriented Cycle Extension of graphs namely Circular Ladder and Petersen Graphs.
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-015-0225-1