Corner Boundary Value Problems
Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro–Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differentia...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2015-06, Vol.9 (5), p.1157-1210 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Boundary value problems on a manifold with smooth boundary are closely related to the edge calculus where the boundary plays the role of an edge. The problem of expressing parametrices of Shapiro–Lopatinskij elliptic boundary value problems for differential operators gives rise to pseudo-differential operators with the transmission property at the boundary. However, there are interesting pseudo-differential operators without the transmission property, for instance, the Dirichlet-to-Neumann operator. In this case the symbols become edge-degenerate under a suitable quantisation, cf. Chang et al. (J Pseudo-Differ Oper Appl 5(2014):69–155,
2014
). If the boundary itself has singularities, e.g., conical points or edges, then the symbols are corner-degenerate. In the present paper we study elements of the corresponding corner pseudo-differential calculus. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-014-0424-9 |