Extremal Domains for Self-Commutators in the Bergman Space

In Olsen and Reguera ( arXiv:1305.5193v1 , 2013 ), the authors have shown that Putnam’s inequality for the norm of self-commutators can be improved by a factor of 1 2 for Toeplitz operators with analytic symbol φ acting on the Bergman space A 2 ( Ω ) . This improved upper bound is sharp when φ ( Ω )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2015-01, Vol.9 (1), p.99-111
Hauptverfasser: Fleeman, Matthew, Khavinson, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Olsen and Reguera ( arXiv:1305.5193v1 , 2013 ), the authors have shown that Putnam’s inequality for the norm of self-commutators can be improved by a factor of 1 2 for Toeplitz operators with analytic symbol φ acting on the Bergman space A 2 ( Ω ) . This improved upper bound is sharp when φ ( Ω ) is a disk. In this paper we show that disks are the only domains for which the upper bound is attained.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-014-0379-x