Integral Operator Approach to Learning Theory with Unbounded Sampling

This paper mainly focuses on the least square regularized regression learning algorithm in a setting of unbounded sampling. Our task is to establish learning rates by means of integral operators. By imposing a moment hypothesis on the unbounded sampling outputs and a function space condition associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2012-06, Vol.6 (3), p.533-548
Hauptverfasser: Lv, Shao-Gao, Feng, Yun-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper mainly focuses on the least square regularized regression learning algorithm in a setting of unbounded sampling. Our task is to establish learning rates by means of integral operators. By imposing a moment hypothesis on the unbounded sampling outputs and a function space condition associated with marginal distribution ρ X , we derive learning rates which are consistent with those in the bounded sampling setting.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-011-0139-0