Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities
We prove that the Lyapunov exponent of quasi-periodic cocycles with singularities behaves continuously over the analytic category. We thereby generalize earlier results, where singularities were either excluded completely or constrained by additional hypotheses. Applications include parameter depend...
Gespeichert in:
Veröffentlicht in: | Journal of fixed point theory and applications 2011-09, Vol.10 (1), p.129-146 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the Lyapunov exponent of quasi-periodic cocycles with singularities behaves continuously over the analytic category. We thereby generalize earlier results, where singularities were either excluded completely or constrained by additional hypotheses. Applications include parameter dependent families of analytic Jacobi operators, such as extended Harper’s model describing crystals in varying lattice geometries subject to external magnetic fields. |
---|---|
ISSN: | 1661-7738 1661-7746 |
DOI: | 10.1007/s11784-011-0055-y |