Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities

We prove that the Lyapunov exponent of quasi-periodic cocycles with singularities behaves continuously over the analytic category. We thereby generalize earlier results, where singularities were either excluded completely or constrained by additional hypotheses. Applications include parameter depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2011-09, Vol.10 (1), p.129-146
Hauptverfasser: Jitomirskaya, S., Marx, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the Lyapunov exponent of quasi-periodic cocycles with singularities behaves continuously over the analytic category. We thereby generalize earlier results, where singularities were either excluded completely or constrained by additional hypotheses. Applications include parameter dependent families of analytic Jacobi operators, such as extended Harper’s model describing crystals in varying lattice geometries subject to external magnetic fields.
ISSN:1661-7738
1661-7746
DOI:10.1007/s11784-011-0055-y