Sharp power mean bounds for Seiffert mean
In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a...
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2014-03, Vol.29 (1), p.101-107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively. |
---|---|
ISSN: | 1005-1031 1993-0445 |
DOI: | 10.1007/s11766-014-3008-6 |