Infinitely many pairs of cospectral integral regular graphs

A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematics-A Journal of Chinese Universities 2011-09, Vol.26 (3), p.280-286
Hauptverfasser: Wang, Li-gong, Sun, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and G5(n, n + 2) are a pair of non-isomorphic connected cospectral integral regular graphs for any positive integer n.
ISSN:1005-1031
1993-0445
DOI:10.1007/s11766-011-2180-1