Infinitely many pairs of cospectral integral regular graphs
A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and...
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2011-09, Vol.26 (3), p.280-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and G5(n, n + 2) are a pair of non-isomorphic connected cospectral integral regular graphs for any positive integer n. |
---|---|
ISSN: | 1005-1031 1993-0445 |
DOI: | 10.1007/s11766-011-2180-1 |