1-concave basis for TU games and the library game

The study of 1-convex/1-concave TU games possessing a nonempty core and for which the nucleolus is linear was initiated by Driessen and Tijs (Methods Oper. Res. 46:395–406, 1983 ) and Driessen (OR Spectrum 7:19–26, 1985 ). However, until recently appealing abstract and practical examples of these cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TOP 2012-10, Vol.20 (3), p.578-591
Hauptverfasser: Driessen, Theo S. H., Khmelnitskaya, Anna B., Sales, Jordi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of 1-convex/1-concave TU games possessing a nonempty core and for which the nucleolus is linear was initiated by Driessen and Tijs (Methods Oper. Res. 46:395–406, 1983 ) and Driessen (OR Spectrum 7:19–26, 1985 ). However, until recently appealing abstract and practical examples of these classes of games were missing. The paper solves these drawbacks. We introduce a 1-concave basis for the entire space of all TU games wherefrom it follows that every TU game is either 1-convex/1-concave or is a sum of 1-convex and 1-concave games. Thus we may conclude that the classes of 1-convex/1-concave games constitute rather considerable subsets in the entire game space. On the other hand, an appealing practical example of 1-concave game has cropped up in Sales’s study (Ph. D. thesis, 2002 ) of Catalan university library consortium for subscription to journals issued by Kluwer publishing house. The so-called library game turns out to be decomposable into suitably chosen 1-concave games of the basis mentioned above.
ISSN:1134-5764
1863-8279
DOI:10.1007/s11750-010-0157-5