Information flow principles for plasticity in foraging robot swarms
An important characteristic of a robot swarm that must operate in the real world is the ability to cope with changeable environments by exhibiting behavioural plasticity at the collective level. For example, a swarm of foraging robots should be able to repeatedly reorganise in order to exploit resou...
Gespeichert in:
Veröffentlicht in: | Swarm intelligence 2016-03, Vol.10 (1), p.33-63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important characteristic of a robot swarm that must operate in the real world is the ability to cope with changeable environments by exhibiting behavioural plasticity at the collective level. For example, a swarm of foraging robots should be able to repeatedly reorganise in order to exploit resource deposits that appear intermittently in different locations throughout their environment. In this paper, we report on simulation experiments with homogeneous foraging robot teams and show that analysing swarm behaviour in terms of information flow can help us to identify whether a particular behavioural strategy is likely to exhibit useful swarm plasticity in response to dynamic environments. While it is beneficial to maximise the rate at which robots share information when they make collective decisions in a static environment, plastic swarm behaviour in changeable environments requires regulated information transfer in order to achieve a balance between the exploitation of existing information and exploration leading to acquisition of new information. We give examples of how information flow analysis can help designers to decide on robot control strategies with relevance to a number of applications explored in the swarm robotics literature. |
---|---|
ISSN: | 1935-3812 1935-3820 |
DOI: | 10.1007/s11721-016-0118-1 |