Mechanical, thermal and fire retardation behaviours of nanoclay/vinylester nanocomposites

The dispersion of montmorillonite (MMT) in vinylester for preparing nanoclay/vinylester gel coat was reported. Two sets of MMT/vinylester specimens, namely Type 1 and Type 2, were prepared for comparative studies. Type 1 specimens were prepared using ultrasonication only, and Type 2 specimens were p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of materials science 2011-12, Vol.5 (4), p.401-411
Hauptverfasser: Vishnu Mahesh, K. R., Narasimha Murthy, H. N., Kumara Swamy, B. E., Sharma, S. C., Sridhar, R., Pattar, Niranjan, Krishna, M., Sherigara, B. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dispersion of montmorillonite (MMT) in vinylester for preparing nanoclay/vinylester gel coat was reported. Two sets of MMT/vinylester specimens, namely Type 1 and Type 2, were prepared for comparative studies. Type 1 specimens were prepared using ultrasonication only, and Type 2 specimens were prepared using both ultrasonication and twin-screw extrusion. According to XRD and TEM results, Type 2 specimens showed lower levels of nanoclay agglomeration and higher levels of exfoliation. DSC results showed that the glass transition temperatures of Type 2 specimens are higher than those of Type 1 specimens. TGA results showed that the residual weight of 4 wt.% MMT/vinylester of Type 1 was 7.38%, while the corresponding value of Type 2 was 13.5%, indicating lower thermal degradation in the latter. MMT/ vinylester/glass and MMT/vinylester/carbon specimens were fabricated and tested for mechanical and fire retardation behaviours. Type 2 based nanocomposite laminates showed greater values of ultimate tensile strength, flexural strength, interlaminar shear strength, impact strength, horizontal burning rate, and vertical burning rate than Type 1 based laminates. SEM images of tensile fractured surfaces revealed that Type 2 based laminates have no or less agglomeration of nanoclay than Type 1 based laminates.
ISSN:2095-025X
2095-0268
DOI:10.1007/s11706-011-0149-x