Effects of aroP gene disruption on L-tryptophan fermentation
The production of L-tryptophan through che- mical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of the transport system for the aromatic amino acids in L- tryptophan producing strains has not been fully explored. In this study, the atop g...
Gespeichert in:
Veröffentlicht in: | Frontiers of chemical science and engineering 2012-06, Vol.6 (2), p.158-162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of L-tryptophan through che- mical synthesis, direct fermentation, bioconversion and enzymatic conversion has been reported. However, the role of the transport system for the aromatic amino acids in L- tryptophan producing strains has not been fully explored. In this study, the atop gene of the L-tryptophan producing Escherichia coli TRTH strain was disrupted using Red recombination technology and an atoP mutant E. coli TRTH AaroP was constructed. Fed-batch fermentation of E. coli TRTH △aroP was carried out in 30-L fermentor to investigate the L-tryptophan production. Compared with E. coli TRTH, the atoP mutant was able to maintain a higher growth rate during the exponential phase of the fermentation and the L-tryptophan production increased by 13.3%. |
---|---|
ISSN: | 2095-0179 2095-0187 |
DOI: | 10.1007/s11705-012-1275-4 |