Anisotropic Shear Behavior of AA7075-T6: Machine Learning Modeling and Failure Mechanism

In this paper, we develop an artificial neural network model optimized by a genetic algorithm to predict the anisotropic shear responses of AA7075-T6. The orientation-dependent failure mechanisms are investigated and analyzed. Before training, classical plastic theory, i.e., the anisotropic quadrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2024-12, Vol.33 (23), p.12891-12905
Hauptverfasser: Lv, Lin, Lee, Wei William, Lin, Hui, Jin, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop an artificial neural network model optimized by a genetic algorithm to predict the anisotropic shear responses of AA7075-T6. The orientation-dependent failure mechanisms are investigated and analyzed. Before training, classical plastic theory, i.e., the anisotropic quadratic yield function is used as the yield function. The findings show that the quadratic function is unsuitable for modeling the shear anisotropy of material. The machine learning model provides a flexible and accurate prediction of orientation-dependent shear strength. In addition, the qualitative effects of orientation on fracture failure mechanisms are discussed. The influences of orientation are mainly shown as the changes in local ductile characteristics, i.e., the size and growth direction of dimples.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-023-08907-0