Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance

Solid-state lithium batteries using solid-state electrolytes (SSE) improve both thermal stability and energy density compared with organic liquid electrolytes lithium-ion batteries (LIBs). However, their usage is still challenged by low lithium-ion conductivity and high interfacial resistance betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2021-06, Vol.30 (6), p.4543-4551
Hauptverfasser: Liu, Fangfang, Chuan, Xiuyun, Yang, Yang, Huang, Dubin, He, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state lithium batteries using solid-state electrolytes (SSE) improve both thermal stability and energy density compared with organic liquid electrolytes lithium-ion batteries (LIBs). However, their usage is still challenged by low lithium-ion conductivity and high interfacial resistance between SSE and electrodes, as well as difficulties running at room temperature (RT). Herein, we demonstrate an electrode/solid-state electrolyte interface, in which poly(ether-acrylate) (PEA) network was introduced on the surface of ceramic electrolytes via photo-polymerization, thus dramatically reducing the SSE/Li interfacial resistance from 4822 to 122 Ω cm 2 . As a result, the Li/Li cells can cycle over 500 h at 0.3 mA cm −2 , LiFePO 4 /Li delivers 200 cycles with capacity retention of 91.1% at RT, respectively. This research provides a method to improve the interface contact between SSE and electrodes, and offers possibilities for application of solid-state Li metal batteries under ambient condition.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-021-05748-7