Analysis on the Fatigue Properties of Shot-Peened Al-Si-Mg Alloy and Its Fatigue Life Prediction
Ceramic micro-shot peening (CMSP) and steel micro-shot peening (SMSP) were utilized to investigate the effect of micro-shot peening (MSP) on the high-cycle fatigue properties of Al-7Si-0.3Mg casting aluminum alloy in a previous study. However, the improvement effects of CMSP and SMSP on the fatigue...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2020-08, Vol.29 (8), p.5114-5125 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ceramic micro-shot peening (CMSP) and steel micro-shot peening (SMSP) were utilized to investigate the effect of micro-shot peening (MSP) on the high-cycle fatigue properties of Al-7Si-0.3Mg casting aluminum alloy in a previous study. However, the improvement effects of CMSP and SMSP on the fatigue strength (at 5 × 10
7
cycles) were only 33% because the depth of harden layers was only 20 and 55 μm while the depth of compressive residual stress affected layers was only 37 and 68 μm. In this study, conventional shot peening (CSP) was utilized, and the results were compared with those of MSP, with the expectation that CSP would provide a greater improvement in the fatigue strength. The affected surface layers of the shot-peened specimens were characterized using surface morphology, microhardness, and residual stress analyses. In addition, the effect of CSP on the fatigue strength at 5 × 10
7
cycles was investigated using a rotating bending fatigue test (
R
= − 1). An investigation of the extensive surface compressive residual stress relaxation process for the three different shot-peened specimens during cyclic loading was conducted using x-ray diffraction. In addition, the initiation sites for fatigue cracks on the fracture surface were observed using scanning electron microscopy. Furthermore, the fatigue life of the samples with the internal casting defect failure mode was predicted using linear elastic fracture mechanics, while that for samples with the surface crack initiation failure mode was predicted using the modified Morrow model considering the residual stress. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-020-05001-7 |