Investigation of Stress Corrosion Cracking Initiation in Machined 304 Austenitic Stainless Steel in Magnesium Chloride Environment
The effect of the machining-induced residual stresses and microstructural changes on the stress corrosion cracking (SCC) initiation in 304 austenitic stainless steel was investigated. The residual stress was measured with an x-ray diffractometer, and the microstructural changes were characterized by...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2020, Vol.29 (1), p.191-204 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the machining-induced residual stresses and microstructural changes on the stress corrosion cracking (SCC) initiation in 304 austenitic stainless steel was investigated. The residual stress was measured with an x-ray diffractometer, and the microstructural changes were characterized by the electron backscatter diffraction. Through a load-free testing in the boiling magnesium chloride solution, the subsurface zone of high SCC sensitivity was identified by detecting the depth of the micro-cracks. The development of the SCC micro-crack was related to the machining-induced residual stresses and microstructural changes. The results showed that the SCC micro-crack was prone to propagate in the subsurface where the residual stress was larger than 200 MPa, along with high-density grain boundary. Additionally, the SCC micro-crack initiation was observed to develop along the machining-induced slip bands. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-020-04558-7 |