Effect of Cryogenic Treatment on Microstructure and Mechanical Properties of 0Cr12Mn5Ni4Mo3Al Steel

This paper systematically investigated the effect of cryogenic temperature and soaking time on the 0Cr12Mn5Ni4Mo3Al steel. Microstructure observation and mechanical tests were performed on the specimens by scanning electron microscopy, x-ray diffraction, Vickers hardness tests and tensile tests. Cry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2017-10, Vol.26 (10), p.5079-5084
Hauptverfasser: Bai, Xue, Zheng, Linbin, Cui, Jinyan, Wu, Sujun, Song, Ruokang, Xie, Di, Wang, Dawei, Li, Haisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper systematically investigated the effect of cryogenic temperature and soaking time on the 0Cr12Mn5Ni4Mo3Al steel. Microstructure observation and mechanical tests were performed on the specimens by scanning electron microscopy, x-ray diffraction, Vickers hardness tests and tensile tests. Cryogenic treatments were carried out at different temperatures of −73, −120, −160 and −196 °C for a given soaking time of 4 h and at a specific temperature of −73 °C for different soaking time of 8, 12, 21 and 32 h, followed by the subsequent tempering treatment. The results showed that the volume fraction of martensite in this steel has significantly increased and the size of martensite lath has decreased after cryogenic treatment, which leads to the improvement of the mechanical properties of the steel. The cryogenic treatment affected the microstructure by promoting the transformation of retained austenite to martensite and the formation of reversed austenite in the steel. The optimal hardness and strength of this steel were obtained by cryogenic treatment at −73 °C for 8 h. It has been found that the soaking time is a critical parameter for the mechanical properties of 0Cr12Mn5Ni4Mo3Al steel. When the cryogenic temperature is lower than −73 °C, there is no further improvement of the mechanical properties.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-017-2932-z