Vacuum Brazing Diamond Grits with Cu-based or Ni-based Filler Metal
Diamond grits were brazed using Cu-Sn-Cr and Ni-Cr-B-Si filler metals, and the brazed grits were examined for microstructure (SEM, EDS, XRD), microhardness, and compression strength. Results showed that the microstructure of the Cu-based filler metal was uniform and consisted of α-Cu + (α-Cu + δ). I...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2017-08, Vol.26 (8), p.4112-4120 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diamond grits were brazed using Cu-Sn-Cr and Ni-Cr-B-Si filler metals, and the brazed grits were examined for microstructure (SEM, EDS, XRD), microhardness, and compression strength. Results showed that the microstructure of the Cu-based filler metal was uniform and consisted of α-Cu + (α-Cu + δ). Its wettability to the diamond was better than Ni-based filler due to the formation of a thin carbide reaction layer that improved the bond strength between the diamond and steel. The Cu-based filler led to reduced thermal damage to the diamond. The Cr in the filler metal diffused to the steel substrate to form a reaction layer at the filler/steel substrate interface. The microhardness of the Ni filler metal (810-830 HV0.3) was significantly higher than that of Cu filler metal (170-230 HV0.3). The compressive load values of the diamond grits brazed with Cu-based or Ni-based filler metal were 93.7 and 49.2% of the original diamond, and the TI values were 83.7 and 59.8% of the original diamond. Grinding experiments for failure mode in monolayer tools revealed that the tools brazed with Cu-based filler metal had a lower macro-fracture ratio than those brazed using the Ni-based filler. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-017-2804-6 |