Mechanical Characterization of CrN/CrAlN Multilayer Coatings Deposited by Magnetron Sputtering System

Chromium-based coatings are deposited on a 100Cr6 (AISI 52100) substrate by a physical vapor deposition magnetron sputtering system. The coatings have different structures, such as a CrN monolayer and CrAlN multilayer. The structural and morphological compositions of the coatings were evaluated usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2015-10, Vol.24 (10), p.4077-4082
Hauptverfasser: Kaouther, Khlifi, Hafedh, Dhiflaoui, Lassaad, Zoghlami, Ahmed, Ben Cheikh Larbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chromium-based coatings are deposited on a 100Cr6 (AISI 52100) substrate by a physical vapor deposition magnetron sputtering system. The coatings have different structures, such as a CrN monolayer and CrAlN multilayer. The structural and morphological compositions of the coatings were evaluated using glow discharge optical emission spectroscopy, atomic force microscopy, and cross-sectional scanning electron microscopy. Nano-indentation tests were performed to investigate the mechanical properties. Domes and craters are shown to be uniformly distributed over the entire surfaces of the two coatings. Additionally, the CrN/CrAlN multilayer coating exhibits a rough surface, attractive mechanical properties, a high compressive stress, and a high plastic and elastic deformation resistance. The improvement of the mechanical properties of the CrN/CrAlN coating is mainly attributed to a reduction in the crystallite size. We found that this reduction was related to three factors: (1) the compositional change resulting from the substitution of aluminum for chromium, which can produce a decrease in the interatomic distance; (2) the structure of CrN/CrAlN, which was characterized by grain size refinement; and (3) the high number of interfaces, which explains the widely accepted concept of dislocation blocking by the layer interfaces.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-015-1692-x